

Syllabi for the CINCH-II VET courses

Lead Beneficiary: NNL

Due date: 31/05/15

Released on: 24/05/16

Authors:	Paul Scully (NNL), Alex Brown (NNL)			
For the Lead Beneficiary		Reviewed by Workpackage Leader	Approved by Coordinator	
Lead Beneficiary Name		WP Leader Name	Jonfoh	

Start date of project:01/06/2013Project Coordinator:JProject Coordinator Organisation:Q

Jan John CTU in Prague Duration: 36 Months

VERSION: 1.0

Project co-funded by the European Commission under the Euratom Research and Training Programme on Nuclear Energy within the Seventh Framework Programme			
Dissemination Level			
PU	Public		
RE	RE Restricted to a group specified by the partners of the CINCH project		
СО	Confidential, only for partners of the CINCH project	X	

Version control table

Version	Date of issue	Author(s)	Brief description of changes made
number			
1.0	24/05/16	A.Brown, P.Scully	Issue to Participants for Comment and
			Discussion at M36 Meeting, Prague
1.1	03/06/16	A.Brown, P.Scully	Incorporation of comments and final
			issue

Relevance

This deliverable contributes to the following Work-Packages and Tasks:

ALL
WP 1
Task 1.1 Task 1.2 Task 1.3 Task 1.4
WP 2
🔀 Task 2.1 🗌 Task 2.2 🗌 Task 2.3 🗌 Task 2.4
WP 3
□ Task 3.1 □ Task 3.2 □ Task 3.3 □ Task 3.4 □ Task 3.5
WP 4
Task 4.1 Task 4.2 Task 4.3 Task 4.4
WP 5
□ Task 5.1 □ Task 5.2 □ Task 5.3 □ Task 5.4

Project information

Project full title:	Cooperation in education and training In Nuclear CHemistry
Acronym:	CINCH-II
Funding scheme:	Coordination Action
ECGA number:	605173
Programme and call	FP7 EURATOM, FP7-Fission-2013-5.1.1
Coordinator:	Jan John
EC Project Officer:	Georges Van Goethem
Start date – End date:	01/06/13 - 31/05/16 i.e. 36 months
Coordinator contact:	+420 224 358 228, jan.john@fjfi.cvut.cz
Administrative contact:	+420 245 008 599, <u>cinch@evalion.cz</u>
Online contacts:	http://www.cinch-project.eu/

Copyright

The document is proprietary of the CINCH-II consortium members. No copying or distributing, in any form or by any means, is allowed without the prior written agreement of the owner of the property rights. This document reflects only the authors' view. The European Community is not liable for any use that may be made of the information contained herein.

CONTENT

INTR	RODUCTION	
COUI	RSES BY NMBU	5
1.	Environmental Radiobiology	5
2.	ERICA MODELLING RISK ASSESSMENT	
3.	EXPERIMENTAL RADIOECOLOGY	
COUI	RSES BY IRS	
1.	BASICS OF RADIOPROTECTION	
COUI	RSES BY CEA	
1.	BEHAVIOUR OF RADIONUCLIDES IN THE BIOSPHERE	
COUI	RSES BY CTU	
1.	Hands-on Training in Nuclear Chemistry	
2.	PRACTICAL EXERCISES IN RADIOANALYTICAL METHOD	
COUI	RSES BY CHALMERS	
1.	NUCLEAR FUEL FABRICATION	21
2.	Plutonium Chemistry	
3.	Fuel Coolant Interaction	
COU	RSES BY UNKNOWN INSTITUTION	
1.	LIQUID SCINTILLATION COUNTING	
2.	Field work	
3.	AN INTRODUCTION TO RADIOISOTOPE TECHNIQUES	

INTRODUCTION

Coordination in education and training In Nuclear CHemistry (CINCH-II) is a consortium of partners across Europe which aims at bringing together the capabilities of the different partners in order to implement new courses and to find a way of meeting the nuclear chemistry postgraduate education training needs of the European Union.

As part of CINCH, a pan-European set of vocational and education training (VET) courses for participation by nuclear industry and research professionals have been prepared. These VET courses will be developed for the specific needs of non-academic end-users, for example employers, regulators etc. These needs were identified in a comprehensive review undertaken by the CINCH consortium. The VET courses described in the sections below will be further developed and delivered by the following partners:

- Loughborough University (LU) United Kingdom¹,
- Norwegian University of Life Sciences (NMBU) Norway,
- The Atomic Energy and Alternative Energies Commission (CEA) France,
- Chalmers University of Technology (Chalmers) Sweden,
- Czech Technical University (CTU) Czech Republic.

This report describes the syllabus for the VET courses developed in CINCH-II. The syllabus uses the European Commission Vocational and Educational Training (ECVET) credit system. This system is designed to facilitate the transfer, recognition and accumulation of assessed learning outcomes of individuals who are aiming to achieve a qualification. A reader of this report will acquire an understanding of what knowledge, skills and competencies will be achieved from undertaking a course.

¹ Please note that since the start of CINCH-II, nuclear and radiochemistry at Loughborough University has stopped. Their courses will be delivered at an institution that was not known when this document was delivered.

COURSES BY NMBU

1. Environmental Radiobiology

Course overview – key facts				
Institution:	NMBU / CERAD			
Lecturer(s):	Deborah Oughton (NMBU), Carmel Mothersill, Colin Brian Seymour (McMaster University, Hamilton, Canada)			
Credit value:	3 ECVET/ ECTS			
Duration:	1 week, intensive lectures			
Location:	NMBU, Ås, Norway			
Year of entry:	2017			
Teaching language:	English			
Entry requirement:				
Course details	·			
Purpose	The aim of the course is to give students an introduction to the fundamental principles of radiobiology, within the context of research fields on radioecology and the environmental effects of radiation.			
Short description of the course	The course will cover both the history and the state-of-the art of our knowledge on the biological effects of radiation on humans, including how recent studies are challenging established paradigms, but will concentrate specifically on those issues and applications of most relevance for other organisms. This includes effects and endpoints of relevance for non-human organisms, ways in which radiobiology methods and biomarkers are being applied in ecological research, factors influencing radiosensitivity in different organisms, and ecological risk assessment. Case studies will include ecological research in Chernobyl and Fukushima, and laboratory work on biomarker analysis in model organisms.			
Learning outcome	For students of radioecology the course provides the opportunity to get a better understanding of the fundamentals of radiobiology; for radiation biology students it offers the chance to see how radiobiology concepts and tools are applied in other areas of radiation research, thus gaining a more in depth understanding of their subject.			
Skills	Student has an overview of radiobiology fundamentals and state-of-the art of knowledge on radiation effects in humans. Student is able to understand and estimate/evaluate effects and endpoints of radiation on both humans and non-human biota.			
Knowledge	Student has knowledge and understands the environmental radiobiology concepts as well challenging paradigms. Student has knowledge and understands radiobiology methods and biomarkers being applied in ecological research, factors influencing radiosensitivity in different organisms, and ecological risk assessment.			

Competences	Student is able to estimate and evaluate potential radiation effects in humans and biota.
	Student is competent to join the team working with investigating the radiobiological effects by using biomarker tools and endpoint assessments.
	Student is competent to use certain radiobiological methods and tools in ecological risk assessment

Lecture details*		
	Lectures	Time (h)
	Radiobiology refresher: DNA damage and repair, cell survival curves, etc.	3
Theoretical part	Effects of Ionising Radiation on Non-human biota – history, concepts and endpoints, differences in concepts of radiation protection of non-human species and humans	3
	RBE and weighting factors: comparison of human and non-human approaches; Non-targeted effects and new paradigms in radiation biology	4
	Field studies of radiation ecological effects: Chernobyl, Komi, Fukushima	2.5
	Ecosystem Approach and Radiation Ecology	2
	Introduction to radiation biomarkers and applications in non-human biota	
	Radiosensitivity and radioresistance in non-human species, intra and interspecies	2.5
	differences, life history stages.	
	Factors influencing cell radiosensitivity; Oxygen status, cell cycle, etc.	2
	Environmental Risk Assessment and Regulation of Effects on Non-human Species	6
	Biomarker tools and endpoint assessments, applications in non-human biota; chromosome aberration, micronuclei, microarray, immunohistochemical	
	Follow up on laboratory sample preparation: cell cultures, media harvesting	
	Total Hours	25
	Laboratory exercises	Time (h)
Practical part	Visit to the NMBU low dose irradiation facility, FIGARO. Laboratory work: organism dissection, cell cultures, harvesting for bystander analysis, comet assay, micronuclei assay. Demonstrations and hands on exercises	Approx 5h
	Total Hours	5

Obligatory deliverable	None			
Exam				
	Written	Oral	Both	
	Yes, The exam is a course assignment to produce a detailed experimental description and plan to test a specific hypothesis.	-	-	

* In addition to the one week intensive teaching, students are expected to spend one week on research and assignment, and will be given tutoring (distance) by the course teachers during this time.

2. ERICA Modelling Risk Assessment

2 ECVET/ ECTS, Course attendance certification (without exam) 2 days NMBU, Ås, Norway 2017 English The aim of the course is to give students a grounding in the theory and kills needed to carry out environmental risk assessment for non-human organisms. This will include hands-on training in the ERICA risk assessment tool and modelling issues. The central theme is environmental risk assessment; hence, the focus is he exposure of non-human biota to ionizing radiation. The course	
2 days MBU, Ås, Norway 2017 English The aim of the course is to give students a grounding in the theory and kills needed to carry out environmental risk assessment for non-human organisms. This will include hands-on training in the ERICA risk assessment tool and modelling issues. The central theme is environmental risk assessment; hence, the focus is he exposure of non-human biota to ionizing radiation. The course	
NMBU, Ås, Norway 2017 English The aim of the course is to give students a grounding in the theory and kills needed to carry out environmental risk assessment for non-human organisms. This will include hands-on training in the ERICA risk assessment tool and modelling issues. The central theme is environmental risk assessment; hence, the focus is he exposure of non-human biota to ionizing radiation. The course	
2017 English The aim of the course is to give students a grounding in the theory and kills needed to carry out environmental risk assessment for non-human organisms. This will include hands-on training in the ERICA risk assessment tool and modelling issues. The central theme is environmental risk assessment; hence, the focus is he exposure of non-human biota to ionizing radiation. The course	
English The aim of the course is to give students a grounding in the theory and kills needed to carry out environmental risk assessment for non-human organisms. This will include hands-on training in the ERICA risk assessment tool and modelling issues. The central theme is environmental risk assessment; hence, the focus is he exposure of non-human biota to ionizing radiation. The course	
The aim of the course is to give students a grounding in the theory and kills needed to carry out environmental risk assessment for non-human organisms. This will include hands-on training in the ERICA risk assessment tool and modelling issues. The central theme is environmental risk assessment; hence, the focus is he exposure of non-human biota to ionizing radiation. The course	
kills needed to carry out environmental risk assessment for non-human organisms. This will include hands-on training in the ERICA risk assessment tool and modelling issues. The central theme is environmental risk assessment; hence, the focus is the exposure of non-human biota to ionizing radiation. The course	
kills needed to carry out environmental risk assessment for non-human organisms. This will include hands-on training in the ERICA risk assessment tool and modelling issues. The central theme is environmental risk assessment; hence, the focus is the exposure of non-human biota to ionizing radiation. The course	
kills needed to carry out environmental risk assessment for non-human organisms. This will include hands-on training in the ERICA risk assessment tool and modelling issues. The central theme is environmental risk assessment; hence, the focus is the exposure of non-human biota to ionizing radiation. The course	
he exposure of non-human biota to ionizing radiation. The course	
The central theme is environmental risk assessment; hence, the focus is the exposure of non-human biota to ionizing radiation. The course concentrates on the ERICA Tool used in radiation risk assessment and management and is given as 2 days hands-on training course in modelling and assessment ERICA Tool. This provides nuclear science and radiation protection students with important insights into similaritie and differences in risk assessment and management of ionizing radiation modules as compared to other stressors. Course includes theoretical explanation of the fundamentals for the development of the ERICA Tool but the accent is on practical use of all three tiers in the Tool. It is oper to students of environmental science, ecology and nature management, well as those from nuclear sciences. Due to practical aspects of the course and course length, it is convenient for professionals and students interested in risk assessments and management.	
The students are expected to have proper knowledge and skills to properly assess impacts of ionizing radiation in the environment. The course gives a thorough introduction to modelling necessary to ensure that decisions on environmental issues give appropriate weight to the exposure, effects and risks from ionizing radiation.	
Student has an overview of the basic risk assessment modelling for non- numan biota.	
adiation in freshwater, terrestrial and marine ecosystems. Student is able to conduct risk assessment using all three available tiers lepending on the results and assessments need.	
Student has knowledge and understands the ecosystem approach for the essessment of effects of ionizing radiation on non-human biota. Student has knowledge and understands elements related to environmental management, risk characterization and impact assessment. Student has knowledge and understands underlying principles of risk and mpact assessment and characterization, including uncertainties.	

Competences		Student is IUR (International Union of Radioecology) certificated		
	Student is	ERICA Tool user. Student is able to do risk and impact assessments using ERICA Tool in different cases at national and international scales.		
Lecture details				
	Lectures			Time (h)
	Historical context and drivers			1
	The ERICA Integrat	ed approach		1.5
	Transfer dosimetry a	and effects		1.5
Theoretical part	Structure of the Too	l – the tiered system		1
P	Registration of infor	mation		1
	Transport models			2
	Tiers $1 \rightarrow 3$			2
	Total Hours			10
	Laboratory exercises			Time (h)
	Training ERICA Tool (PC obligatory) - Risk and impact assessment on various examples including different ecosystems, reference organisms and radionuclides.		ifferent	6
Practical part	Homework – deliverable to be done on self-chosen case of risk assessment			6
	Total Hours			12
Obligatory deliverable	Case study			
Exam	1			
Obligatory attendance for awarding of certification	Written Oral			th
of course/training participation				

3. Experimental Radioecology

Course overview – key facts		
Institution:	Norwegian University of Life Sciences (NMBU)	
Lecturer(s):	Ole Christian Lind / Lindis Skipperud	
Credit value:	5 ECVET/ ECTS	
Duration:	2 weeks	
Location:	Ås, Norway	
Year of entry:	2016	
Teaching language:	English	
Entry requirement:	English TOFL test	
Course details		
Purpose	To educate, train and equip with basic knowledge on radioecology needed in areas of environmental protection, waste management, nuclear facilities, regulatory institutions, etc.	
Short description of the course	Radioecology deals with a continuum that starts with releases of radionuclides from a source, continues through the dispersal and retention of the contaminants by various transport and transfer processes, and ends with the determination of dose to be used to assess risks to human populations and to ecosystems.	
Learning outcome	The students are expected to have an overview over radioecology and be able to conduct experimental radio-ecological studies. The course gives a thorough introduction to radiochemistry including tracer techniques, radiochemical separation techniques as well as advanced measurement methods that are used in radioecology. In addition to radioactive sources, the course also focuses on species (speciation), transport, mobility, biological uptake and the effect of radiation as well as assessment of environmental impact and risks related to radioactive contamination.	
Skills	Have an overview of the field of radioecology.	
	Is able to conduct radioecological studies using tracer techniques, radiochemical separation techniques and advanced measurement methods.	
	Be able to take part in basic preparedness, countermeasures and risk assessment within the topic of radioactive contamination.	
	Can prepare and deliver effective oral and written presentations of technical information and scientific results	
Knowledge	Understands and has knowledge on radioactive sources	
	Understands the transport and spreading of radioactive substances in various ecosystems	
	Understands the basis for environmental impact and risk assessments	
	Understands and can evaluate the possible countermeasures and clean-up strategies	

Competences		Is able to communicate and cooperate with people working on other subjects	
		Has insight in ethics and risk connected to use of t	radioactive sources
	Is able to contribute within national preparedness associate radioactive contamination		associated with
Lecture details			
		Lectures	Time (h)
	environi Sources	tion: Speciation of radionuclides in the ment, radioecological aspects ; Past, present and future sources of clides in the environment	6
Theoretical part		emical separation techniques emical separation techniques cont.	
	Advance	ed methods	1
	NORM	and dose calculation	3
	NORM	and dose calculations	
	Demons	tration of radon measurements	
	Advance	ed methods II	2
	The Che	ernobyl nuclear accident	
	Modeling within radioecology (NB! students need laptop pc)		4
	Modeling within radioecology Radioactive particles/Speciation		
			4
		microscopy/Particle identification and rization (demonstration)	
	Biologic	cal effects of ionizing radiation	2
		ng impacts of ionizing radiation to man les, mechanisms, biomarkers)	
	Freshwa	ter radioecology I	7
	Freshwa	ter radioecology II	
	Radio se	ensitivity	
		ng impacts of ionizing radiation to non-human rinciples, mechanisms, biomarkers)	
	Introduc	tion to Erica assessment tool	
		ology principles and challenges, including stressors	
		ology principles and challenges, including stressors	
	The Fuk	ushima accident	5
	Radionuclides in the marine environment		
	Radionu	clides in the marine environment cont.	
	Terrestr	al radioecology, transfer and countermeasures	5
	Prepared	lness, Environmental security	

	Case study: Nuclear prepar	redness	5	
	Summary of case study			
	Summary of KJM351			
	Total Hours	42		
	Laborato	ry exercises	Time (h)	
	Introduction to laboratory	exercise	3	
	Start experiment: Kinetics,	, CF, Kd.		
Practical part	Size- and charge fractionat	tion		
i i uccicui pui c	Kinetics, CF, Kd: 3-4 hrs r	neasurement	2	
	Size- and charge fractionat	tion continue		
	Sequential extractions, step	p 1-4	4	
	Kinetics, CF, Kd: ~24 hrs	measurement		
	Sequential extractions, end	l step 4, steps 5 and 6	5	
	End kinetics, BC, Kd, ~70	3		
	Autoradiography			
	Start depuration			
	End depuration.	5		
	Size- and charge fractionat	Size- and charge fractionations, ~96 hrs		
	Autoradiography (read-out	()		
	Total Hours	Total Hours		
Obligatory	Laboratory report journal			
deliverable	Course thesis on topic of choice			
Exam				
	Written	Both		
	Yes	No		

COURSES BY IRS

Course overview – key fa	acts		
Institution:	Uni	versity of Hanover, Institute for Radioecology and Radiation Protection	
Lecturer(s):	Dr. Jan-Willem Vahlbruch		
Credit value:	1 ECVET/ ECTS		
Duration:	4 h		
Location:	Onli	ine	
Year of entry:	201	6	
Teaching language:	Eng	lish	
Entry requirement:	Eng	lish TOFL test	
Course details			
Purpose		This e-learning module is intended to provide basic knowledge of radioactivity and radiation protection.	
Short description of the cours	se	This course teaches the basics of the structure of atoms and nuclei, of ionizing radiation and its interaction with matter. One of the focuses is on the different terms used to describe the effects of radiation exposure on humans.	
Learning outcome		The students are expected to know the basic concepts of nuclear physics, like radioactivity and half-time. They will learn the basic characteristics of the different radioactive decay types and are able to understand a decay scheme. The course also focuses on radiation protection, explaining the concepts	
		of radiation dose, absorbed dose, ion dose, dose rate and the biological effect of the different types of radiation.	
Skills		Can describe the basics of radiation protection.	
		Can describe the energy spectra of alpha, beta and gamma radiation.	
		Is able to interpret alpha, beta and gamma decay schemes.	
		Is able to describe the atomic structure of matter, as well as provide information on the sizes and proportions in the atom.	
Knowledge		Knows the different types of radioactive decays; can explain the formation process and the physical properties of ionizing radiation	
		Understands the meaning of the quantity "activity"	
		Understands the difference between a continuous and a discrete spectrum	
		Understands the different interaction mechanisms of ionizing radiation with matter and the implications for radiation protection	
		Understands the production and spectrum of X-rays	
		Understands the concepts of radiation dose, absorbed dose, ion dose, dose rate	
		Knows the biological effect of the different types of radiation	

1. Basics of Radioprotection

Competences	Has insight into the risks connected to the use of radioactive sources, and ways of diminishing radiation exposure.			
	Can apply the theoretical knowledge to the protection.			to the field of practical radiation
Lecture details				
		Lee	ctures	Time (h)
	The ator	nic structure of ma	tter	½ h
	Ionizing	radiation		½ h
	Radioac	tivity		½ h
Theoretical part	The ener	rgy of ionizing rad	½ h	
i neorenear part	The interactions of radiation with matter			½ h
	X-ray radiation			½ h
	Radiation dose			½ h
	Dose rat	Dose rate		½ h
		Laborato	Time (h)	
Practical part	none	none		
Obligatory deliverable	Moodle test			
Exam	1			
	Written		Both	
	Yes No			No

COURSES BY CEA

Course overview – key facts		
Institution:	French Atomic Energy Commission	
Lecturer(s):	Eric Ansoborlo	
Credit value:	2 ECVET/ ECTS	
Duration:	3 days intensive teaching	
Location:	Saclay, France	
Year of entry:	2015	
Teaching language:	English	
Entry requirement:	English TOFL test	
Course details		
Purpose	To educate and train with basic nuclear chemistry knowledge on behaviour of radionuclides (RNs) in case of release in the environment.	
Short description of the course	Behaviour of radionuclides in the biosphere is mainly dependent on the source of the RNs (authorized or accidental releases) and their speciation in the different media. This initial speciation plays a major role on the transfer of the RNs in the environment and on impact on health . A state of the art on general physic-chemical properties of RNs of interest, their toxicology and radiotoxicology, transfer in the environment (air , soil, water, plants, species), guidance values, analytical methods, treatment of the contamination (decorporation) and remediation and use of thermodynamic databases for speciation will be given.	
Learning outcome	The students are expected to have an overview over speciation of RNs of interest in nuclear chemistry and mainly encountered in nuclear industry such as tritium, Cs, Co, I, Sr, actinides (U, Pu). The course gives a basic and general introduction to chemistry, radiochemistry and speciation through different aspects and information available from the Mendeleiev periodic table including an overview of speciation analytical techniques. In addition the course also focuses on general overview of human toxicology and radiotoxicology, transfer and impact on the environment referring to guidance or recommendations given by international organisms such as WHO, IAEA, ICRP and UNSCEAR. Finally a specific focus is given on the role and use of databases such as thermodynamic data.	
Skills	Have an overview of the field of RNs speciation including analysis, applied to toxicology and environment Be able to better understanding or conduct any impact studies, and to deal with treatment of contamination (decorporation or remediation) Can prepare and deliver effective oral and written presentations of technical information and scientific results	

1. Behaviour of Radionuclides in the Biosphere

Knowledge	Understands and has knowledge on chemistry and radiochemistry Understands the basis for environmental impact and risk assessments, and guidance associated Understands and can evaluate the possible countermeasures and clean-up strategies
Competences	Is able to communicate and cooperate with people working on other subjects Has insight in ethics and risk connected to use of radionuclides Is able to contribute within national preparedness associated with radionuclide contamination

Lecture details

	Lee	ctures	Time (h)	
	Generalities on the behavior the biospher	1		
	Physico-chemical informat periodic table	2		
Theoretical part	Speciation of RNs		2	
	Generalities on human tox guidances	icology and radiotoxicity +	2	
	Generalities on the effect of guidances	of ionizing radiations +	3	
	Generalities on the impact of RNs in the environment + guidances			
	Specific data on RNs of in Pu, Po)	5		
	Treatment of the contamin (decorporation) and in the	2		
	Databases and tools in spe-	2		
	Total Hours	Total Hours		
Obligatory	Laboratory report journal	Laboratory report journal		
deliverable	Course thesis on topic of choice			
Exam	1			
	Written	Oral	Both	
	Yes (3 hours)	No		

г

COURSES BY CTU

Course overview – key facts			
Institution:	Czech Technical University in Prague, Department of Nuclear Chemistry		
Lecturer(s):	CTU team with guests		
Credit value:	3 ECVET/ ECTS		
Duration:	3.5 days e-learning, 3.5 days labwork		
Location:	Theory: e-learning (CINCH Moodle), Lab: Prague. Czech Republic		
Year of entry:	2012		
Teaching language:	English		
Entry requirement:	BSc. in Chemistry (minimum)		
Course details			
Purpose	Provide necessary background for master/PhD-level non-nuclear chemists and master/PhD students in chemistry (non-nuclear or radiochemistry), necessary for their later enrolment into the general purpose education/training modular courses covering the more specialized fields of their activities at the end-users.		
Short description of the course	The theoretical part introduces the attendees to the basics of nuclear chemistry and radiochemistry, covering fundamental principles and procedures. The practical part aims at familiarizing the attendees with the basic principles of work in a radiochemical laboratory and at demonstrating some key aspects and principles given in theoretical part.		
Learning outcome	The attendants are expected to have an overview over fundamental theoretical aspects and basic practical work in nuclear chemistry and radiochemistry. The course gives a practical introduction to handling of radionuclides and their solutions, contamination – decontamination aspects of the radiochemical work, separation techniques in radiochemistry, measurement of ionizing radiation, and focuses on connection between theory and practice.		
Skills	Work in radiochemistry laboratory Follow substantial work scheme "preparation – measurement – calculation" with respect to radiochemistry practice and radiometric detection Basic application of fundamental NRC principles.		
	Work with open radioactive sources/materials		
Knowledge	Knowledge of basic principles of nuclear chemistry. Understanding and knowledge of using and handling of radioactive materials		
	Basic insight of/knowledge about fundamental phenomena behind radiation protection and decontamination routines. Introductory knowledge and understanding of experiments with		
	radioactivity and their setup.		
Competences	Is now trained to carry out, understand and plan basic radiochemical work and experiments.		
	Is now able to understand and exchange knowledge in the NRC field; and hold the conversation on the basic NRC technical level.		
	Is able to help in minor laboratory contamination issue or an accident.		

1. Hands-on Training in Nuclear Chemistry

	Lectures	Time (h)
Theoretical part		()
	Fundamentals of nuclear chemistry 1 (Structure and properties of atomic nuclei. Classification of radionuclides. Kinetics of radioactive decay. Radioactive equilibria. Binuclear reactions. Yield of nuclear reactions. Natural radioactivity. Radioactive decay chains.)	7
	Fundamentals of nuclear chemistry 2	7
	(Nuclear fission, fission products. Hot atoms chemistry. Szilard-Chalmers system. Radiation chemistry. Actinides and trans-actinides.)	
	Radiation detection and dosimetry	7
	(Interaction of IR with matter. Detection of ionizing radiation (detector types, principles). Dosimetry of ionizing radiation. Radiation protection.)	
	Total	21
	Laboratory exercises	Time (h)
	Preparation and handling of radioactive solution with	
Practical part	defined activity. Opening of contaminated ampoules.	2
Practical part		2 3
Practical part	defined activity. Opening of contaminated ampoules.Work in glove box: Liquid-liquid extraction of uranium in	
Practical part	defined activity. Opening of contaminated ampoules. Work in glove box: Liquid-liquid extraction of uranium in the water-organic extractant system.	3
Practical part	defined activity. Opening of contaminated ampoules.Work in glove box: Liquid-liquid extraction of uranium in the water-organic extractant system.Decontamination of surfacesInduced radioactivity – irradiation of silver and	3
Practical part	defined activity. Opening of contaminated ampoules.Work in glove box: Liquid-liquid extraction of uranium in the water-organic extractant system.Decontamination of surfacesInduced radioactivity – irradiation of silver and deconvolution of complex decay curve.Radioactive generators: Elution of daughter radionuclide	3 3 2
Practical part	defined activity. Opening of contaminated ampoules.Work in glove box: Liquid-liquid extraction of uranium in the water-organic extractant system.Decontamination of surfacesInduced radioactivity – irradiation of silver and deconvolution of complex decay curve.Radioactive generators: Elution of daughter radionuclide and determination of its half-life.	3 3 2 2
Practical part Optional practical tasks, e.g.	defined activity. Opening of contaminated ampoules.Work in glove box: Liquid-liquid extraction of uranium in the water-organic extractant system.Decontamination of surfacesInduced radioactivity – irradiation of silver and deconvolution of complex decay curve.Radioactive generators: Elution of daughter radionuclide and determination of its half-life.High-resolution gamma-ray spectrometry, calibration.	3 3 2 2 2 2

Obligatory deliverable	Successful pass of the introductory test of radiation protection. Practical task reports. Presentation of the results.
------------------------	--

Exam				
	Written	Oral	Both	
	Yes. Entrance radiation protection test.	Yes. Short task related oral exam before starting practical work.		

2. Practical Exercises in Radioanalytical Methods

Course overview – key facts		
Institution:	Czech Technical University in Prague, Department of Nuclear Chemistry	
Lecturer(s):	CTU team with guests	
Credit value:	5 ECVET/ ECTS	
Duration:	1 week e-learning, 1 week labwork	
Location:	Theory: e-learning (CINCH Moodle), Lab: Prague. Czech Republic	
Year of entry:	2016	
Teaching language:	English	
Entry requirement:	Hands-on Training in Nuclear Chemistry (or equivalent).	
Course details		
Purpose	Provide an overview of the applications of nuclear and radiochemistry in analytical chemistry to NRC master and PhD level students and/or to analytical chemists without NRC background working in radioanalytical laboratories.	
Short description of the course	The first part of theoretical courses explains the specifics of the separation methods in radiochemistry and reviews the principles of key radioanalytical methods such as e.g. the isotope dilution analysis, sub- stoichiometric dilution analysis, radio-reagent methods, or interaction methods. In the second part, determination of various radionuclides in the environment is reviewed. The lectures / readings are complemented with remote operated RoboLab exercises aimed at the demonstration of the basic principles of some of the methods.	
	The practical part aims at familiarizing the attendees with selected examples of the basic radioanalytical methods, their principles, and also the competencies to correctly perform these methods.	
Learning outcome	The attendants are expected to have an overview of fundamental theoretical aspects and basic practical work in the field of radioanalytical applications in nuclear and radiochemistry. The course gives a practical introduction to handling of radionuclides and their solutions, contamination – decontamination aspects of the radiochemical work and focuses on connection between theory and practice. The full outcome depends on additional optional practical tasks.	
	Work in analytical radiochemistry laboratory	
Skills	Follow the work scheme "sample collection – sample treatment / separation of analyzed radionuclides – measurement – calculation" with respect to radiochemistry practice and radiometric detection. Advanced application of combined NRC and separation principles.	
	Work with open radioactive sources/materials at analytical level	
Knowledge	Basic insight/knowledge of radioanalytical methods, using ionizing radiation in/for analytical purposes, and general methods of determination of the selected radionuclides. Knowledge and understanding of experimental setup and standard radioanalytical procedures.	
Competences	Is now trained to carry out and understand radioanalytical work and methods of determination of the selected radionuclides in various types of samples.	
	Is now able to understand and communicate on the basic radioanalytical level having insight into radioanalytical laboratory practice.	

Lecture details		
Theoretical next	Lectures	Time (h)
Theoretical part	Separation methods in radiochemistry (Separations in radioactive and trace systems. Extraction methods and chromatography methods - principles, instrumentation. Other separation methods used in nuclear chemistry.)	12+4
	Chemistry of radioactive elements (Cis-uranium radioactive elements, actinoids, transactinoids)	6
	Radioanalytical methods (Indicator methods. Isotope dilution analysis. Radio- reagent methods. Non-activation interaction methods. Activation analysis.	8
	Determination of selected radionuclides (Natural radioactivity. Radioactive decay chains. Determination of selected radionuclides in the environment and/or technosphere.)	8
	Total	38
	Laboratory exercises	Time (h)
Practical part	Determination of mercury (silver) by sub-stoichiometric analysis	4
	Determination of the solubility product of silver chromate	4
	Determination of magnesium by radiometric titration	4
	Determination of uranium by neutron activation analysis with delayed neutron counting	5
	Determination of ²²⁶ Ra and ²²² Rn using emanometry with Lucas chamber or using LSC	5
	Determination of ¹³⁷ Cs in natural waters / Determination of gamma emitters in the environment by high resolution gamma-ray spectrometry.	5
	Plutonium determination / alpha spectrometry;	4
	Radio-immunological analysis (RIA)	5

Obligatory deliverable	Successful passing of entrance test of radiation protection. Task protocols. Presentation of the results.
------------------------	---

Exam			
	Written	Oral	Both
	Yes. Entrance radiation protection test.	Yes. Short task related oral exam before starting practical work.	

COURSES BY CHALMERS

1. Nuclear Fuel Fabrication

Course overview – key facts		
Institution:	Chalmers University of Technology (Chalmers) - Sweden	
Lecturer(s):	Chalmers team with guests	
Credit value:	2 ECVET/ ECTS	
Duration:	1 day lecture or e-learning, 3.5 days labwork	
Location:	Theory: Chalmers, Gothenburg (Sweden) or e-learning (CINCH Moodle), Lab: Chalmers	
Year of entry:	2015	
Teaching language:	English	
Entry requirement:	Basic nuclear chemistry (minimum requirements)	
Course details		
Purpose	The course is aimed for a very compact, short introduction and hands-on experience on Nuclear fule fabrication. It can be used as a stand-alone module in a larger Nuclear Chemistry course.	
	It's aim is to provide a hands-on experience on nuclear fuel fabrication via a novel route, namely sol-gel method (while keeping in mind the commercial route of powder processing) to NRC master and PhD level students and/or to analytical chemists with basic NRC background working in radioanalytical laboratories.	
Short description of the course	The first part of theoretical course explains the specifics of the conventional nuclear fuel production and reviews the principles of key radioanalytical methods such as e.g. the isotope dilution analysis, sub- stoichiometric dilution analysis, radio-reagent methods as well as the main surface characterization methods. In the second part (the practical part), hands-on work is performed in radiochemical laboratory where the whole process of nuclear fuel fabrication is performed by the student (except minor operations like grinding and cutting). The overall goal is familiarizing the students with work in a real environment, gaining insight on routines and safety of the work place.	
Learning outcome	The attendants are expected to have an overview of fundamental theoretical aspects and basic practical work in the field of radioanalytical applications in nuclear and radiochemistry applied on nuclear fuel fabrication. The course gives a practical introduction to the complex process of nuclear fuel application, with the possibility of learning a novel alternative, like the sol-gel method.	
Skills	Work in analytical radiochemistry laboratory Follow the work scheme outlined for the purpose. Analyze all the safety aspects of the experiment beforehand with mitigation methods. Advanced application of combined NRC and separation principles. Work with open radioactive sources/materials at analytical level. Work with high temperature oven(s), gases and glove-boxes.	

Knowledge Basic insight/knowledge of radioanalytical methods, using ionir radiation in/for analytical purposes, and general methods of determination of the selected radionuclides.		
	Knowledge and understanding of experimental setup and standard radioanalytical procedures.	
	Knowledge and understanding of surface characterization methods (XRD/SEM).	
	Knowledge and operation capability of a high temperature oven under certain atmosphere.	
Competences	Is now trained to carry out and understand radioanalytical work and methods of fabrication of nuclear fuel via a novel method.	
	Is now trained to carry out and understand the operation of a high temperature oven under certain atmosphere (gas).	
	Is now able to understand and communicate on the basic radioanalytical level having insight into radioanalytical laboratory practice.	

Lecture details		
Theoretical part	Lectures	Time (h)
	One lecture with general information about nuclear fuel fabrication.	6
	Total	6
	Laboratory exercises	Time (h)
Practical part	Internal sol-gel process procedure for microsphere production	2
	Calcination and reduction of the microspheres	4
	Peletization and syntering	4
	Characterization of the resulted pelets	4
	Total	14

Obligatory deliverable	Successful passing of entrance test of radiation protection. Task protocols. Presentation of the results.
------------------------	---

Exam			
	Written	Oral	Both
	Yes. Entrance radiation protection test.	Yes. Short task related oral exam before starting practical work.	

2. Plutonium Chemistry

Course overview – key facts	
Institution:	Chalmers University of Technology (Chalmers) - Sweden
Lecturer(s):	Chalmers team with guests
Credit value:	1 ECVET/ ECTS
Duration:	1 day lecture or e-learning, 1 day labwork
Location:	Theory: Chalmers, Gothenburg (Sweden) or e-learning (CINCH Moodle), Lab: Chalmers
Year of entry:	2015
Teaching language:	English
Entry requirement:	Basic nuclear chemistry (minimum requirements)
Course details	
Purpose	The course is aimed for a very compact, short introduction and hands-on experience on working with plutonium. It can be used as a stand-alone module in a larger Nuclear Chemistry course.
	It's aim is to provide a hands-on experience on plutonium chemistry and handling to NRC master and PhD level students and/or to analytical chemists with basic NRC background working in radioanalytical laboratories.
Short description of the course	The first part of theoretical course explains the very complex chemistry of plutonium from production to use. In the second part a very thorough description of analytical methods for plutonium measurements in different sample matices is also given.
	In the practical part, a hands-on experimental part is performed and it shows how Plutonium can be separated from Americium.
	The overall goal is familiarizing the students with work in a real environment, gaining insight on routines and safety of the work place.
Learning outcome	The attendants are expected to have an overview of fundamental theoretical aspects and basic practical work in the field of radioanalytical applications in nuclear and radiochemistry applied on plutonium. The course gives a practical introduction to the complex process of separating plutonium from other radionuclides.
CU 'II	Work in analytical radiochemistry laboratory
Skills	Follow the work scheme outlined for the purpose. Analyze all the safety aspects of the experiment beforehand with mitigation methods.
	Advanced application of combined NRC and separation principles. Work with open radioactive sources/materials at analytical level.
Knowledge	Basic insight/knowledge of radioanalytical methods, using ionizing radiation in/for analytical purposes, and general methods of determination of the selected radionuclides (Pu and Am).
	Knowledge and understanding of experimental setup and standard radioanalytical procedures.
	Knowledge and understanding of characterization methods.
Competences	Is now trained to carry out and understand radioanalytical work and methods of handling plutonium.
	Is now able to understand and communicate on the basic radioanalytical level having insight into radioanalytical laboratory practice.

Lecture details		
Theoretical part	Lectures	Time (h)
	One lecture with broad information about plutonium and plutonium chemistry as well as analytical methods.	6
	Total	6
	Laboratory exercises	Time (h)
Practical part	Separation of Plutonium from Americium via a Solvent extraction route.	4
	Total	4

Obligatory deliverable	Successful passing of entrance test of radiation protection. Task protocols. Presentation of the results.
------------------------	---

Exam			
	Written	Oral	Both
	Yes. Entrance radiation protection test.	Yes. Short task related oral exam before starting practical work.	

3. Fuel Coolant Interaction

Course overview – key facts	
Institution:	Chalmers University of Technology (Chalmers) - Sweden
Lecturer(s):	Chalmers team with guests
Credit value:	1 ECVET/ ECTS
Duration:	1 day lecture or e-learning, 1 day labwork
Location:	Theory: Chalmers, Gothenburg (Sweden) or e-learning (CINCH Moodle), Lab: Chalmers
Year of entry:	2015
Teaching language:	English
Entry requirement:	Basic nuclear chemistry (minimum requirements)
Course details	
Purpose	The course is aimed for a very compact, short introduction on nuclear accident scenarios, more specifically reactor safety with regard to fuel-coolant interactions. A practical part is included in the course, where the study of the effect of UO2 fuel and liquid metal coolants (e.g. Lead/Bismuth) interaction is studied under different temperatures and atmosphere (gas, e.g. Ar or air). It can be used as a stand-alone module in a larger Nuclear Chemistry course.
	It's aim is to provide a hands-on experience on analysing and understanding the fuel-coolant interaction to NRC master and PhD level students and/or to analytical chemists with basic NRC background working in radioanalytical laboratories.
Short description of the course	The first part of theoretical course explains the very complex chemistry of a nuclear accident up to severe accidents scenarios with focuss on fuel- coolant interaction. In the practical part, a hands-on experimental part is performed where the effect of UO2 fuel and liquid metal coolants (e.g. Lead/Bismuth) interaction is studied under different temperatures and atmosphere (gas, e.g. Ar or air).
	The overall goal is familiarizing the students with work in a real environment, gaining insight on routines and safety of the work place.
Learning outcome	The attendants are expected to have an overview of fundamental theoretical aspects and basic practical work in the field of radioanalytical applications in nuclear and radiochemistry applied on nuclear accidents. The course gives a practical introduction to the complex process of analyzing the effects of the temperature and gas has on nuclear fuel.
Skills	Work in analytical radiochemistry laboratory Follow the work scheme outlined for the purpose. Analyze all the safety aspects of the experiment beforehand with mitigation methods. Advanced application of combined NRC and separation principles. Work with open radioactive sources/materials at analytical level. Working with a high temperature oven as well as handling gases.
Knowledge	Basic insight/knowledge of radioanalytical methods, using ionizing radiation in/for analytical purposes, and general methods of determination of the selected radionuclides. Knowledge and understanding of experimental setup and standard radioanalytical procedures. Knowledge and understanding of characterization methods.

Competences	Is now trained to carry out and understand radioanalytical work and methods of handling nuclear fuel.	
	Is now able to understand and communicate on the basic radioanalytical level having insight into radioanalytical laboratory practice.	

Lecture details		
Theoretical part	Lectures	Time (h)
	One lecture with broad information about nuclear accident scenarios and fuel-coolants interactions.	6
	Total	6
	Laboratory exercises	Time (h)
Practical part	The effect of UO ₂ fuel and liquid metal coolants (e.g. Lead/Bismuth) interaction is studied under different temperatures and atmosphere (gas, e.g. Ar or air).	4
	Total	4

Obligatory deliverable	Successful passing of entrance test of radiation protection. Task protocols. Presentation of the results.
------------------------	---

Exam			
	Written	Oral	Both
	Yes. Entrance radiation protection test.	Yes. Short task related oral exam before starting practical work.	

COURSES BY UNKNOWN INSTITUTION

1. Liquid Scintillation Counting

Course overview – key facts	
Institution:	Unknown
Lecturer(s):	Unknown
Credit value:	2 ECVET/ ECTS
Duration:	1 Week
Location:	Unknown
Year of entry:	Unknown
Teaching language:	English
Entry requirement:	'An introduction to radiochemical analysis' or equivalent. International students must achieve IELTS 6.5.

Course details		
Purpose	To educate the cohort with an understanding of liquid scintillation counting, its purpose and how it works.	
Short description of the course	This course will cover a range of topics with a thorough overview of quenching including channel ratios method, colour quenching and quench correction by automatic external standard.	
	As well as the theoretical course, a practical element will also be undertaken by the delegates. The course will primarily focus on two radioisotopes C-14 and H-3 which will include the preparation of these quenched standards for use on the course. As the course progresses, other isotopes such as P-32 and I-125 will be analysed in different matrices. In addition, more challenging samples will be investigated such as dual labelled samples, inhomogeneity in samples and the effect of sample volume on counting efficiency.	
Learning outcome	Have an overview of liquid scintillation counting including when and why it is used.	
	Be confident in preparing samples for analysis and interpreting data produced.	
	Understanding of quenching and how to account for it.	
	Comfortable handling a range of open sources.	
Skills	Prepare and deliver effective written laboratory reports including technical information and scientific discussion.	
	Be comfortable working with others and but take responsibility for individual work.	
Knowledge	Understands and has knowledge on chemistry and radiochemistry	
	Understands the basis for alternative analytical measurements	
Competences	Able to communicate effectively using correct scientific knowledge.	
	Be able to work effectively and efficiently with other students.	
	Able to contribute to practical experiments and interpret scientific data.	

Lecture details			
	Le	ectures	Time (h)
Theoretical part	Welcome and Introductory Lecture		2
	Total hours		2
	Laborat	ory exercises	Time (h)
	Preparation of quenched of standards for use on the c		2
Practical part	Examination of the pulse height spectra of unquenched and quenched samples of Carbon-14 and Tritium		2
	Quench correction by san	nple channels ratio (SCR)	2
	Quench correction by aut (AES)	omatic external standard	2
	Colour quenching		2
	Comparison of two scintillators for use with quenched samples		2
	Counting an aqueous solution using tritium		2
	Counting dual labelled samples		2
	Detection of inhomogeneity in counting samples		2
	To determine the dependence of counting efficiency on sample volume		2
	Assay of iodine-125 in milk		2
	Measurement of phosphorous-32 using Cerenkov radiation		2
	A demonstration of proble absorption	A demonstration of problems with may arise due to absorption	
	Total hours		26
Obligatory deliverable	Laboratory Report		
Exam	· · ·		
	Written	Oral	Both
	Yes	No	No

2. Field work

Course overview – key facts		
Institution:	Unknown	
Lecturer(s):	Unknown	
Credit value:	2 ECVET/ ECTS	
Duration:	1 week	
Location:	Unknown	
Year of entry:	Unknown	
Teaching language:	English	
Entry requirement:	'An introduction to radiochemical analysis' or equivalent. International students must achieve IELTS 6.5.	

Course details	
Purpose	To develop new skills and apply learning from the classroom to real world problems.
Short description of the course	During the field trip you will gain hands-on experience and carry out guided field exercises and research projects to investigate particular environments.
Learning outcome	Demonstrate advanced level knowledge and understanding of specific processes and conceptual approaches
	Describe, analyse and explain the results of the fields work, lectures and seminars and relate these to existing knowledge
	Draw consistent arguments and conclusions based on the results of knowledge gained on the module.
	Plan, design, execute and report on a short research project with limited guidance.
	Collect, interpret, evaluate and combine different types of evidence and information.
	Be responsible and understand the health and safety issues that arise with a field trip.
Skills	Analyse and evaluate independently, a range of research-informed literature and synthesise research-informed examples from the literature into written work.
	Devise and sustain, with little guidance, a logical and reasoned argument with sound, convincing conclusions.
	Communicate effectively, arguments, evidence and conclusions using a variety of formats in a manner appropriate to the intended audience.
	Analyse and evaluate appropriate data and complete a range of research- like tasks with very limited guidance.
	Evaluate strengths and weaknesses in relation to graduate-level professional and practical skills, acting autonomously to develop new areas of skills as necessary.

Knowledge	Understand the importance of correct storage of samples How to take representative samples Understands the importance of effective and carefully planned sampling
Competences	Is able to communicate and cooperate with colleagues. Understanding of ethics and risk connected with field work and radioactive samples.

Lecture details

Lecture acturis					
	Lectures		Time (h)		
	Introduction to the field trip	o and its aims	1		
Theoretical part	Itinerary and planning		1		
	Health and safety in fieldwork		1		
	Introduction to the field area and key concepts		1		
	Total hours		4		
	Laborato	Time (h)			
Practical part	In the field		2.5 days		
	Analysis of samples		8		
	Total hours	28			
Obligatory deliverable	Group presentation undertaken on field trip (10 minutes), Field trip diary exercise (10 hours), Project write-up (2000 words).				
Exam					
	Written	Oral	Both		
	No	Yes	No		

Comment: Allow Monday morning for travel followed by Monday afternoon lectures. 2.5 days in the field followed by an afternoon and Friday morning for analysis of samples. Friday afternoon allocated for travel home.

3. An introduction to Radioisotope Techniques

Course overview – key facts	
Institution:	Unknown
Lecturer(s):	Unknown
Credit value:	3 ECVET/ ECTS
Duration:	1 Week (37 hours contact)
Location:	Unknown
Year of entry:	Unknown
Teaching language:	English
Entry requirement:	International students must achieve IELTS 6.5

Course details		
Purpose	To introduce and educate the cohort to radiochemical analysis and radioisotope techniques in nuclear and radiochemistry.	
Short description of the course	This course will cover an introduction to nuclear chemistry and radiochemical techniques. As part of this, methods of measurement including liquid scintillation counting, gamma and alpha spectrometry and statistics will be covered. Čerenkov counting will be studied whilst purity, stability, hazards and control will also be considered. Additional subject areas including the applications in organic chemistry, radiochromatography and autoradiography, applications in biology, analytical techniques and uses of ionising radiation will also be included. As well as the theoretical course, a considerable practical element will also be undertaken by the delegates.	
Learning outcome	Understanding of radioisotope techniques including liquid scintillation counting, gamma spectrometry and alpha spectrometry. Knowledge of Čerenkov counting and how it can be detected with scintillation detectors. Applications of radioisotopes in organic chemistry and biology.	
Skills	Work safely and efficiently in the laboratory, be confident using the techniques above and be able to interpret scientific data produced from the techniques.Prepare and deliver written documents of technical information and scientific results.	
Knowledge	Understands and has knowledge in chemistry and radiochemistry Understands the need and use of the techniques involved, including its uses in other sectors such as medicine, organic chemistry and biology.	
Competences	Able to communicate effectively and appropriately with colleagues on the subject matter. Understands the risks and benefits of using radionuclides.	

	L	ectures	Time (h)
	Introduction to Nuclear Chemistry		2.5
	Introduction to Radiochemical Techniques		1.5
	Methods of Measurement		1
	Liquid Scintillation Coun	Liquid Scintillation Counting	
	Spectrometry		1
	Statistics		1
	Cerenkov Counting		1
Theoretical part	Purity, Storage and Stabi	1	
	Hazards and Control	2	
	Application in Organic C	1	
	Radiochromatography and Autoradiography		1
	Application in Biology	1	
	Analytical Techniques		2
	Uses of Ionising Radiation		1
	General Discussion		1
	Total hours		19
	Laboratory exercises		Time (h)
Practical part	Gamma spectroscopy		2
	Separation of ^{234m} Pa from half-life	2	
	Separation of ²³⁴ Th from ²³⁸ U		2
	The Determination of low solubilities		2
	Determination of the specific surface area of an insoluble substance		2
	Preparation of ¹⁴ C-labelled aspirin		2
	Quench corrections in liquid scintillation counting		2
	Determination of volume using dilution technique with a single tritium tracer		2
	Introduction to radioimmunoassay		2
	Total hours		18
bligatory eliverable	Laboratory Report		
xam			
	Written	Both	

